3.16.13 \(\int \frac {\sec ^5(c+d x) \sin ^n(c+d x)}{a+b \sin (c+d x)} \, dx\) [1513]

3.16.13.1 Optimal result
3.16.13.2 Mathematica [A] (verified)
3.16.13.3 Rubi [A] (verified)
3.16.13.4 Maple [F]
3.16.13.5 Fricas [F]
3.16.13.6 Sympy [F(-1)]
3.16.13.7 Maxima [F]
3.16.13.8 Giac [F]
3.16.13.9 Mupad [F(-1)]

3.16.13.1 Optimal result

Integrand size = 29, antiderivative size = 360 \[ \int \frac {\sec ^5(c+d x) \sin ^n(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {\left (3 a^2-9 a b+8 b^2\right ) \operatorname {Hypergeometric2F1}(1,1+n,2+n,-\sin (c+d x)) \sin ^{1+n}(c+d x)}{16 (a-b)^3 d (1+n)}+\frac {\left (3 a^2+9 a b+8 b^2\right ) \operatorname {Hypergeometric2F1}(1,1+n,2+n,\sin (c+d x)) \sin ^{1+n}(c+d x)}{16 (a+b)^3 d (1+n)}-\frac {b^6 \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,-\frac {b \sin (c+d x)}{a}\right ) \sin ^{1+n}(c+d x)}{a \left (a^2-b^2\right )^3 d (1+n)}+\frac {(3 a-5 b) \operatorname {Hypergeometric2F1}(2,1+n,2+n,-\sin (c+d x)) \sin ^{1+n}(c+d x)}{16 (a-b)^2 d (1+n)}+\frac {(3 a+5 b) \operatorname {Hypergeometric2F1}(2,1+n,2+n,\sin (c+d x)) \sin ^{1+n}(c+d x)}{16 (a+b)^2 d (1+n)}+\frac {\operatorname {Hypergeometric2F1}(3,1+n,2+n,-\sin (c+d x)) \sin ^{1+n}(c+d x)}{8 (a-b) d (1+n)}+\frac {\operatorname {Hypergeometric2F1}(3,1+n,2+n,\sin (c+d x)) \sin ^{1+n}(c+d x)}{8 (a+b) d (1+n)} \]

output
1/16*(3*a^2-9*a*b+8*b^2)*hypergeom([1, 1+n],[2+n],-sin(d*x+c))*sin(d*x+c)^ 
(1+n)/(a-b)^3/d/(1+n)+1/16*(3*a^2+9*a*b+8*b^2)*hypergeom([1, 1+n],[2+n],si 
n(d*x+c))*sin(d*x+c)^(1+n)/(a+b)^3/d/(1+n)-b^6*hypergeom([1, 1+n],[2+n],-b 
*sin(d*x+c)/a)*sin(d*x+c)^(1+n)/a/(a^2-b^2)^3/d/(1+n)+1/16*(3*a-5*b)*hyper 
geom([2, 1+n],[2+n],-sin(d*x+c))*sin(d*x+c)^(1+n)/(a-b)^2/d/(1+n)+1/16*(3* 
a+5*b)*hypergeom([2, 1+n],[2+n],sin(d*x+c))*sin(d*x+c)^(1+n)/(a+b)^2/d/(1+ 
n)+1/8*hypergeom([3, 1+n],[2+n],-sin(d*x+c))*sin(d*x+c)^(1+n)/(a-b)/d/(1+n 
)+1/8*hypergeom([3, 1+n],[2+n],sin(d*x+c))*sin(d*x+c)^(1+n)/(a+b)/d/(1+n)
 
3.16.13.2 Mathematica [A] (verified)

Time = 0.31 (sec) , antiderivative size = 241, normalized size of antiderivative = 0.67 \[ \int \frac {\sec ^5(c+d x) \sin ^n(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {\left (\frac {\left (3 a^2-9 a b+8 b^2\right ) \operatorname {Hypergeometric2F1}(1,1+n,2+n,-\sin (c+d x))}{(a-b)^3}+\frac {\left (3 a^2+9 a b+8 b^2\right ) \operatorname {Hypergeometric2F1}(1,1+n,2+n,\sin (c+d x))}{(a+b)^3}-\frac {16 b^6 \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,-\frac {b \sin (c+d x)}{a}\right )}{a (a-b)^3 (a+b)^3}+\frac {(3 a-5 b) \operatorname {Hypergeometric2F1}(2,1+n,2+n,-\sin (c+d x))}{(a-b)^2}+\frac {(3 a+5 b) \operatorname {Hypergeometric2F1}(2,1+n,2+n,\sin (c+d x))}{(a+b)^2}+\frac {2 \operatorname {Hypergeometric2F1}(3,1+n,2+n,-\sin (c+d x))}{a-b}+\frac {2 \operatorname {Hypergeometric2F1}(3,1+n,2+n,\sin (c+d x))}{a+b}\right ) \sin ^{1+n}(c+d x)}{16 d (1+n)} \]

input
Integrate[(Sec[c + d*x]^5*Sin[c + d*x]^n)/(a + b*Sin[c + d*x]),x]
 
output
((((3*a^2 - 9*a*b + 8*b^2)*Hypergeometric2F1[1, 1 + n, 2 + n, -Sin[c + d*x 
]])/(a - b)^3 + ((3*a^2 + 9*a*b + 8*b^2)*Hypergeometric2F1[1, 1 + n, 2 + n 
, Sin[c + d*x]])/(a + b)^3 - (16*b^6*Hypergeometric2F1[1, 1 + n, 2 + n, -( 
(b*Sin[c + d*x])/a)])/(a*(a - b)^3*(a + b)^3) + ((3*a - 5*b)*Hypergeometri 
c2F1[2, 1 + n, 2 + n, -Sin[c + d*x]])/(a - b)^2 + ((3*a + 5*b)*Hypergeomet 
ric2F1[2, 1 + n, 2 + n, Sin[c + d*x]])/(a + b)^2 + (2*Hypergeometric2F1[3, 
 1 + n, 2 + n, -Sin[c + d*x]])/(a - b) + (2*Hypergeometric2F1[3, 1 + n, 2 
+ n, Sin[c + d*x]])/(a + b))*Sin[c + d*x]^(1 + n))/(16*d*(1 + n))
 
3.16.13.3 Rubi [A] (verified)

Time = 0.74 (sec) , antiderivative size = 362, normalized size of antiderivative = 1.01, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {3042, 3316, 615, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^5(c+d x) \sin ^n(c+d x)}{a+b \sin (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (c+d x)^n}{\cos (c+d x)^5 (a+b \sin (c+d x))}dx\)

\(\Big \downarrow \) 3316

\(\displaystyle \frac {b^5 \int \frac {\sin ^n(c+d x)}{(a+b \sin (c+d x)) \left (b^2-b^2 \sin ^2(c+d x)\right )^3}d(b \sin (c+d x))}{d}\)

\(\Big \downarrow \) 615

\(\displaystyle \frac {b^5 \int \left (\frac {\left (3 a^2+9 b a+8 b^2\right ) \sin ^n(c+d x)}{16 b^5 (a+b)^3 (b-b \sin (c+d x))}-\frac {\sin ^n(c+d x)}{(a-b)^3 (a+b)^3 (a+b \sin (c+d x))}+\frac {\left (3 a^2-9 b a+8 b^2\right ) \sin ^n(c+d x)}{16 (a-b)^3 b^5 (\sin (c+d x) b+b)}+\frac {(3 a+5 b) \sin ^n(c+d x)}{16 b^4 (a+b)^2 (b-b \sin (c+d x))^2}+\frac {(3 a-5 b) \sin ^n(c+d x)}{16 (a-b)^2 b^4 (\sin (c+d x) b+b)^2}+\frac {\sin ^n(c+d x)}{8 b^3 (a+b) (b-b \sin (c+d x))^3}-\frac {\sin ^n(c+d x)}{8 b^3 (b-a) (\sin (c+d x) b+b)^3}\right )d(b \sin (c+d x))}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {b^5 \left (-\frac {b \sin ^{n+1}(c+d x) \operatorname {Hypergeometric2F1}\left (1,n+1,n+2,-\frac {b \sin (c+d x)}{a}\right )}{a (n+1) \left (a^2-b^2\right )^3}+\frac {\left (3 a^2-9 a b+8 b^2\right ) \sin ^{n+1}(c+d x) \operatorname {Hypergeometric2F1}(1,n+1,n+2,-\sin (c+d x))}{16 b^5 (n+1) (a-b)^3}+\frac {\left (3 a^2+9 a b+8 b^2\right ) \sin ^{n+1}(c+d x) \operatorname {Hypergeometric2F1}(1,n+1,n+2,\sin (c+d x))}{16 b^5 (n+1) (a+b)^3}+\frac {(3 a-5 b) \sin ^{n+1}(c+d x) \operatorname {Hypergeometric2F1}(2,n+1,n+2,-\sin (c+d x))}{16 b^5 (n+1) (a-b)^2}+\frac {(3 a+5 b) \sin ^{n+1}(c+d x) \operatorname {Hypergeometric2F1}(2,n+1,n+2,\sin (c+d x))}{16 b^5 (n+1) (a+b)^2}+\frac {\sin ^{n+1}(c+d x) \operatorname {Hypergeometric2F1}(3,n+1,n+2,-\sin (c+d x))}{8 b^5 (n+1) (a-b)}+\frac {\sin ^{n+1}(c+d x) \operatorname {Hypergeometric2F1}(3,n+1,n+2,\sin (c+d x))}{8 b^5 (n+1) (a+b)}\right )}{d}\)

input
Int[(Sec[c + d*x]^5*Sin[c + d*x]^n)/(a + b*Sin[c + d*x]),x]
 
output
(b^5*(((3*a^2 - 9*a*b + 8*b^2)*Hypergeometric2F1[1, 1 + n, 2 + n, -Sin[c + 
 d*x]]*Sin[c + d*x]^(1 + n))/(16*(a - b)^3*b^5*(1 + n)) + ((3*a^2 + 9*a*b 
+ 8*b^2)*Hypergeometric2F1[1, 1 + n, 2 + n, Sin[c + d*x]]*Sin[c + d*x]^(1 
+ n))/(16*b^5*(a + b)^3*(1 + n)) - (b*Hypergeometric2F1[1, 1 + n, 2 + n, - 
((b*Sin[c + d*x])/a)]*Sin[c + d*x]^(1 + n))/(a*(a^2 - b^2)^3*(1 + n)) + (( 
3*a - 5*b)*Hypergeometric2F1[2, 1 + n, 2 + n, -Sin[c + d*x]]*Sin[c + d*x]^ 
(1 + n))/(16*(a - b)^2*b^5*(1 + n)) + ((3*a + 5*b)*Hypergeometric2F1[2, 1 
+ n, 2 + n, Sin[c + d*x]]*Sin[c + d*x]^(1 + n))/(16*b^5*(a + b)^2*(1 + n)) 
 + (Hypergeometric2F1[3, 1 + n, 2 + n, -Sin[c + d*x]]*Sin[c + d*x]^(1 + n) 
)/(8*(a - b)*b^5*(1 + n)) + (Hypergeometric2F1[3, 1 + n, 2 + n, Sin[c + d* 
x]]*Sin[c + d*x]^(1 + n))/(8*b^5*(a + b)*(1 + n))))/d
 

3.16.13.3.1 Defintions of rubi rules used

rule 615
Int[((e_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), 
 x_Symbol] :> Int[ExpandIntegrand[(e*x)^m*(c + d*x)^n*(a + b*x^2)^p, x], x] 
 /; FreeQ[{a, b, c, d, e, m, n}, x] && ILtQ[p, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3316
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_ 
.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[1/(b^p* 
f)   Subst[Int[(a + x)^m*(c + (d/b)*x)^n*(b^2 - x^2)^((p - 1)/2), x], x, b* 
Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IntegerQ[(p - 1) 
/2] && NeQ[a^2 - b^2, 0]
 
3.16.13.4 Maple [F]

\[\int \frac {\left (\sec ^{5}\left (d x +c \right )\right ) \left (\sin ^{n}\left (d x +c \right )\right )}{a +b \sin \left (d x +c \right )}d x\]

input
int(sec(d*x+c)^5*sin(d*x+c)^n/(a+b*sin(d*x+c)),x)
 
output
int(sec(d*x+c)^5*sin(d*x+c)^n/(a+b*sin(d*x+c)),x)
 
3.16.13.5 Fricas [F]

\[ \int \frac {\sec ^5(c+d x) \sin ^n(c+d x)}{a+b \sin (c+d x)} \, dx=\int { \frac {\sin \left (d x + c\right )^{n} \sec \left (d x + c\right )^{5}}{b \sin \left (d x + c\right ) + a} \,d x } \]

input
integrate(sec(d*x+c)^5*sin(d*x+c)^n/(a+b*sin(d*x+c)),x, algorithm="fricas" 
)
 
output
integral(sin(d*x + c)^n*sec(d*x + c)^5/(b*sin(d*x + c) + a), x)
 
3.16.13.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sec ^5(c+d x) \sin ^n(c+d x)}{a+b \sin (c+d x)} \, dx=\text {Timed out} \]

input
integrate(sec(d*x+c)**5*sin(d*x+c)**n/(a+b*sin(d*x+c)),x)
 
output
Timed out
 
3.16.13.7 Maxima [F]

\[ \int \frac {\sec ^5(c+d x) \sin ^n(c+d x)}{a+b \sin (c+d x)} \, dx=\int { \frac {\sin \left (d x + c\right )^{n} \sec \left (d x + c\right )^{5}}{b \sin \left (d x + c\right ) + a} \,d x } \]

input
integrate(sec(d*x+c)^5*sin(d*x+c)^n/(a+b*sin(d*x+c)),x, algorithm="maxima" 
)
 
output
integrate(sin(d*x + c)^n*sec(d*x + c)^5/(b*sin(d*x + c) + a), x)
 
3.16.13.8 Giac [F]

\[ \int \frac {\sec ^5(c+d x) \sin ^n(c+d x)}{a+b \sin (c+d x)} \, dx=\int { \frac {\sin \left (d x + c\right )^{n} \sec \left (d x + c\right )^{5}}{b \sin \left (d x + c\right ) + a} \,d x } \]

input
integrate(sec(d*x+c)^5*sin(d*x+c)^n/(a+b*sin(d*x+c)),x, algorithm="giac")
 
output
integrate(sin(d*x + c)^n*sec(d*x + c)^5/(b*sin(d*x + c) + a), x)
 
3.16.13.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^5(c+d x) \sin ^n(c+d x)}{a+b \sin (c+d x)} \, dx=\int \frac {{\sin \left (c+d\,x\right )}^n}{{\cos \left (c+d\,x\right )}^5\,\left (a+b\,\sin \left (c+d\,x\right )\right )} \,d x \]

input
int(sin(c + d*x)^n/(cos(c + d*x)^5*(a + b*sin(c + d*x))),x)
 
output
int(sin(c + d*x)^n/(cos(c + d*x)^5*(a + b*sin(c + d*x))), x)